Виды сигналов. Основные типы сигналов и их математическое описание

Проведем классификацию сигналов. Сигналы подразделяют на:

    детерминированные;

    случайные.

Детерминированными называют сигналы, которые точно определены в любые моменты времени. В отличие от них некоторые параметры случайных сигналов заранее предсказать невозможно.

Строго говоря, так как выдача источником сообщений (например, датчиком) того или иного конкретного сообщения случайна, то предсказать точно изменение значений параметров сигнала невозможно. Следовательно, сигнал принципиально имеет случайный характер. Детерминированные сигналы имеют весьма ограниченное самостоятельное значение только для целей наладки и регулировки информационной и вычислительной техники, играя роль эталонов.

В зависимости от структуры параметров сигналы подразделяются на:

    дискретные;

    непрерывные;

    дискретно-непрерывные.

Сигнал считают дискретным по данному параметру, если число значений, которое может принимать этот параметр, конечно (счетно). В противном случае сигнал считают непрерывным по данному параметру. Сигнал, дискретный по одному параметру и непрерывный по другому, называют дискретно-непрерывным.

В соответствии с этим выделяют следующие виды сигналов (рис. 1.4.):

а) Непрерывные по уровню и времени (аналоговые) – это сигналы на выходе микрофонов, датчиков температуры, давления и т.д.

б) Непрерывные по уровню, но дискретные по времени. Такие сигналы получают в результате дискретизации по времени аналоговых сигналов.

Рис. 1.4. Разновидности сигналов.

Под дискретизацией подразумевают преобразование функции непрерывного времени (в частности непрерывного сигнала) в функцию дискретного времени, представляющую последовательность величин, называемых координатами, выборками или отсчетами (sample value).

Наибольшее распространение получил метод дискретизации, при котором роль координат выполняют мгновенные значения непрерывной функции (сигнала), взятые в определенные моменты времени S(t i), где i=1,…,n. Временные интервалы между этими моментами называют интервалами выборки (sample interval). Такой вид дискретизации часто называют амплитудно-импульсной модуляцией (АИМ).

в) Дискретные по уровню, непрерывные по времени. Такие сигналы получают из непрерывных в результате квантования по уровню.

Под квантованием по уровню (или просто квантованием) подразумевают преобразование некоторой величины с непрерывной шкалой значений (например, амплитуда сигнала) в величину, имеющую дискретную шкалу значений.

Эту непрерывную шкалу значений разбивают на 2m+1 интервалов, называемых шагами квантования. Из множества мгновенных значений, принадлежащих j-тому шагу квантования, только одно значение S j является разрешенным, оно называется j-тым уровнями квантования. Квантование сводится к замене любого мгновенного значения непрерывного сигнала одним из конечного множества уровней квантования (обычно ближайшим):

S j , где j=-m,-m+1,…,-1,0,1,…,m.

Совокупность значений S j образует дискретную шкалу уровней квантования. Если эта шкала равномерна, т.е. разность ΔS j = S j - S j-1 постоянна, квантование называется равномерным. В противном случае – неравномерным. Благодаря простоте технической реализации равномерное квантование получило наиболее широкое распространение.

г) Дискретные по уровню и времени. Такие сигналы получают, осуществляя дискретизацию и квантование одновременно. Данные сигналы легко представить в цифровой форме (digital sample), т.е. в виде чисел с конечным числом разрядов, заменив каждый импульс числом, обозначающий номер уровня квантования, которого достиг импульс в конкретный момент времени. По этой причине данные сигналы часто называют цифровыми.

Толчком к представлению непрерывных сигналов в дискретной (цифровой) форме послужила необходимость засекречивания речевых сигналов во время 2-ой мировой войны. Еще большим стимулом к цифровому преобразованию непрерывных сигналов явилось создание ЭВМ, которые используются в качестве источника или приемника сигналов во многих системах передачи информации.

Приведем примеры цифрового преобразования непрерывных сигналов. Например, в цифровых телефонных системах (стандарт G.711) замена аналогового сигнала последовательностью отсчетов происходит с частотой 2F=8000 Гц, Т д = 125 мкс.(Так как диапазон частот телефонного сигнала составляет 300-3400 Гц, а частота выборки по теореме Найквиста-Котельникова должна быть как минимум в два раза больше максимальной частоты преобразовываемого сигнала F). Далее каждый импульс заменяется в 8-ми разрядном аналого-цифровом преобразователе (АЦП – ADC-Analog-to-Digital Converter) двоичным кодом, учитывающим знак и амплитуду отсчета (256 уровней квантования). Такой процесс квантования носит название импульсно-кодовой модуляции (ИКМ или PCM – Pulse Code Modulation). При этом используется нелинейный закон квантования, названный "A=87,6", который лучше учитывает природу восприятия человеком речевых сигналов. Скорость передачи одного телефонного сообщения оказывается 8×8000=64 Кбит/с. 30-канальная система передачи телефонных сообщений (система первого уровня иерархии стандарта МККТТ – PDH-E1) с временным разделением каналов работает уже со скоростью 2048 Кбит/с.

При цифровой записи музыки на CD (Compact Disk - компакт-диск), вмещающим максимум 74 минуты стереозвучания, используют частоту дискретизации 2F≈44,1 КГц (так как предел слышимости человеческого уха 20 кГц плюс 10%-ный запас) и 16-ти разрядное линейное квантование каждой выборки (65536 уровней звукового сигнала, для речи достаточно 7-8 разрядов).

Использование дискретных (цифровых) сигналов резко снижает вероятность получения искаженной информации, потому что:

    в этом случае применимы эффективные методы кодирования, которые обеспечивают обнаружение и исправление ошибок (см. тему 6);

    можно избежать свойственного непрерывному сигналу эффекта накопления искажений в процессе их передачи и обработке, поскольку квантованный сигнал легко восстановить до первоначального уровня всякий раз, когда величина накопленных искажений приблизиться к половине шага квантования.

Кроме того, в этом случае обработку и хранение информации можно осуществлять средствами вычислительной техники.

Аналоговая величина – величина, значения которой в заданном интервале изменяются непрерывно. Её конкретное значение зависит только от точности прибора, производящего измерения. Это, например, температура.

Дискретная величина – величина, значения которой изменяются скачкообразно. Например, число студентов в аудитории. Измерительный сигнал – сигнал, содержащий количественную информацию об измеряемой физической величине. Например, напряжение на выходе термоэлектрического преобразователя, измеряющего температуру.

Сигнал данных – форма представления сообщения данных с помощью физической величины, изменения одного или нескольких параметров которой, отображает его изменение.

В микропроцессорной технике сигналами являются электрические величины (ток, напряжение). Представляющий параметр сигнала данных – параметр сигнала данных, изменение которого отображает изменение сообщения данных (амплитуда, частота, фаза, длительность импульса, длительность паузы).

– сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений, т.е. аналоговые сигналы описываются непрерывной (или кусочно-непрерывной) функцией x a (t), причём сама функция и аргумент t могут принимать любые значения на некоторых интервалах

Аналоговый сигнал f (t) называется периодическим, если существует действительное число T, такое, что f (t + T) = f (t) для любых t, при этом T называется периодом сигнала.

Дискретный сигнал данных – отличается от аналоговых тем, что его значения известны лишь в дискретные моменты времени. Дискретные сигналы описываются решётчатыми функциями – последовательностями – x д (nT), где T = const – интервал (период) дискретизации, n = 0, 1, 2, … .

Сама функция x д (nT) может в дискретные моменты принимать произвольные значения на некотором интервале. Эти значения функции называются выборками или отсчётами функции. Другим обозначением решётчатой функции x(nT) является x(n) или xn. Последовательность x(n) может быть конечной или бесконечной, в зависимости от интервала определения функции.

Квантованный сигнал данных – отличается от аналоговых или дискретных разбиением диапазона значений непрерывной или дискретной величины на конечное число интервалов. Простейшим видом квантования является деление целочисленного значения на натуральное число, называемое коэффициентом квантования.

Цифровой сигнал данных – сигнал, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений. Цифровые сигналы описываются квантованными решётчатыми функциями x ц (nT). При получении цифрового сигнала из аналогового происходят дискретизация и квантование.

Двоичный цифровой сигнал – сигнал данных, в котором используется способ представления информации о величине параметра в виде многоразрядной комбинации двух величин – нуля и единицы – и называемый обычно двоичным кодом.

Модуляция – процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала (сообщения).

В наше время двоичные цифровые сигналы в связи с простотой кодирования и обработки используются в цифровых электронных устройствах. Для передачи цифрового сигнала по каналам связи (например, электрическим или радиоканалам) используются различные виды модуляции.

Рассмотрим примеры представляющих параметров сигналов данных на примере различных видов модуляции (см. рис. 1). Кроме рассмотренных видов модуляции, также существуют фазовая (ФМ), время-импульсная (ВИМ), и другие модуляции.

Рис. 1. Различные виды модуляции сигналов – различные представляющие параметры сигналов данных

Для понимания сущности цифрового сигнала рассмотрим следующую классификацию. В цифровой технике выделяют сигналы (рис. 2):

    произвольные по величине и непрерывные во времени (аналоговые);

    произвольные по величине и дискретные по времени (дискретные);

    квантованные по величине и непрерывные по времени (квантованные);

    квантованные по величине и дискретные по времени (цифровые).

Рис. 2. Аналоговый, дискретный, квантованный и цифровой сигналы

Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал, снимаемый , несёт информацию об изменении температуры, сигнал с микрофона – о быстрых изменениях давления в звуковой волне и т.п.

В области цифровой и импульсной техники терминология не является установившейся. Так, дискретный сигнал – это сигнал, значения представляющего параметра которого известны только в определённые моменты времени, а также это сигнал, в отличие от аналогового, представляющий параметр которого может принимать только фиксированные значения (обычно два: логический «ноль» или логическую «единицу»).

Во втором случае было бы правильно называть сигнал квантованным, но промышленные модули называются «модулями ввода дискретных сигналов». Кроме использования для передачи информации различных физических величин, сигналы различаются также представляющими параметрами.

Сигнал – это материальный носитель информации (данных), которая передается от источника к потребителю. Может представлять собой физические сигналы или математические модели.

Сигналы могут быть аналоговыми и дискретными.

Аналоговый (непрерывный) сигнал отражается некоторой физической величиной, изменяющейся в заданном интервале времени, например, тембром или силой звука.

Приведем пример непрерывного сообщения. Человеческая речь, передаваемая модулированной звуковой волной; параметром сигнала в этом случае является давление, создаваемое этой волной в точке нахождения приемника – человеческого уха.

Дискретный (цифровой) сигнал слагается из счетного множества информационных элементов.

Параметр сигнала принимает последовательное во времени конечное число значений.

Набор самых «мелких» элементов дискретного сигнала называется алфавитом, а сам дискретный сигнал называют также сообщением.

Сообщение, передаваемой с помощью таких сигналов – дискретное.

Информация, передаваемая источником – дискретная.

Примером дискретного сообщения может быть процесс чтения книги, информация в которой представлена текстом, т.е. дискретной последовательностью отдельных значков (букв).

Аналоговый сигнал может быть преобразован в дискретный. Такой процесс называется дискретизацией.

Непрерывное сообщение может быть представлено непрерывной функцией, заданной на некотором отрезке [а, b] (рис. 2.1). Непрерывное сообщение можно преобразовать в дискретное (такая процедура называется дискретизацией).

Рис. 2.1. Процесс дискретизации

Для этого из бесконечного множества значений этой функции (параметра сигнала) выбирается их определенное число, которое приближенно может характеризовать остальные значения. Полученная последовательность значений функции у 1 , у 2 , ... у n . является дискретным представлением непрерывной функции, точность которого можно неограниченно улучшать путем уменьшения длин отрезков разбиения области значений аргумента.

Таким образом, любое сообщение может быть представлено как дискретное, иначе говоря, последовательностью знаков некоторого алфавита.

Возможность дискретизации непрерывного сигнала с любой желаемой точностью (для возрастания точности достаточно уменьшить шаг) принципиально важна с точки зрения информатики. Компьютер – цифровая машина, т. е. внутреннее представление информации в нем дискретно. Дискретизация входной информации (если она непрерывна) позволяет сделать ее пригодной для компьютерной обработки.

Кодирование сигналов

Для автоматизации работы с данными, относящимися к различным типам, очень важно унифицировать их форму представления – для этого обычно используется прием кодирования, то есть выражение данных одного типа через данные другого типа.

Под кодированием сигнала понимают:

· его представление в определенной форме, удобной или пригодной для последующего использования сигнала;

· правило, описывающее отображение одного набора знаков в другой набор знаков.

Кодированию подлежат как отдельные символы исходного алфавита, так и их комбинации.

Приведем пример.

Дана таблица соответствия между натуральными числами трех систем счисления.

Эту таблицу можно рассматривать как некоторое правило, описывающее отображение набора знаков десятичной системы счисления в двоичную и шестнадцатеричную. Тогда исходный алфавит – десятичные цифры от 0 до 9, а кодовые алфавиты – это 0 и 1 для двоичной системы; цифры от 0 до 9 и символы {A, B, C, D, E, F} – для шестнадцатеричной.

Виды кодирования в зависимости от целей кодирования.

1. Кодирование по образцу используется всякий раз при вводе информации в компьютер для ее внутреннего представления.

Данный вид кодирования применяется для представления дискретного сигнала на том или ином машинном носителе.

Большинство кодов, используемых в информатике для кодирования по образцу, имеют одинаковую длину и используют двоичную систему для представления кода (и, возможно, шестнадцатеричную как средство промежуточного представления).

В данном виде кодирования используются:

a) прямые коды.

Применяются для представления в ЭВМ числовых данных и используют двоичную систему счисления. Могут использоваться для кодирования и нечисловых данных.

b) ASCII–коды.

Наиболее распространенным является код ASCII (American Standard Code for Information Interchange), который используется для внутреннего представления символьной информации в операционной системе MS DOS, в Блокноте операционной системы Windows’xx, а также для кодирования текстовых файлов в Интернет.

c) коды, учитывающие частоту символов.

В некоторых системах кодирования значение кода определяется частотой кодируемого символа. Как правило, такие частоты известны для букв алфавитов естественных языков, например, английского или русского, и используются уже давно при размещении клавиш клавиатуры: наиболее часто используемые буквы располагаются на клавишах в середине клавиатуры, наиболее редко используемые – на периферии, что создает удобство работы для человека.

2. Криптографическое кодирование, или шифрование используется, когда нужно защитить информацию от несанкционированного доступа.

3. Эффективное, или оптимальное, кодирование используется для устранения избыточности информации, т.е. снижения ее объема, например, в архиваторах.

Для кодирования символов исходного алфавита используют двоичные коды переменной длины: чем больше частота символа, тем короче его код.
Эффективность кода определяется средним числом двоичных разрядов для кодирования одного символа.

4. Помехозащитное, или помехоустойчивое, кодирование используется для обеспечения заданной достоверности в случае, когда на сигнал накладывается помеха, например, при передаче информации по каналам связи.

В качестве базового кода, который подвергается помехозащитному кодированию, используется двоичный код постоянной длины. Такой исходный (базовый) код называется первичным, поскольку подвергается модификации.

Данные

Термин «данные»

Под данными понимается:

1) представление информации в формализованном (закодированном) виде, позволяющем хранить, передавать или обрабатывать её с помощью технических средств;

2) зарегистрированные сигналы.

Носителями данных могут быть:

· бумага – самый распространённый носитель. Данные регистрируются путем изменения оптических характеристик ее поверхности;

· CD–ROM. Используется изменение оптических свойств в устройствах, осуществляющих запись лазерным лучом на пластмассовых носителях с отражающим покрытием;

· магнитные ленты и диски – используют изменение магнитных свойств.

Операции с данными

С данными можно производить различные операции:

· сбор данных – накопление данных с целью обеспечения достаточной полноты информации для принятия решений;

· формализация данных – приведение данных, поступающих из разных источников, к одинаковой форме, чтобы сделать их сопоставимыми между собой, то есть повысить их уровень доступности;

· фильтрация данных – отсеивание «лишних» данных, в которых нет необходимости для принятия решений; при этом должен уменьшаться уровень «шума», а достоверность и адекватность данных должны возрастать;

· сортировка данных – упорядочение данных по заданному признаку с целью удобства использования; повышает доступность информации;

· группировка данных – объединение данных по заданному признаку с целью повышения удобства использования; повышает доступность информации;

· архивация данных – организация хранения данных в удобной и легкодоступной форме; служит для снижения экономических затрат на хранение данных и повышает общую надежность информационного процесса в целом;

· защита данных – комплекс мер, направленных на предотвращение утраты, воспроизведения и модификации данных;

· транспортировка данных – прием и передача (доставка и поставка) данных между удаленными участниками информационного процесса; при этом источник данных в информатике принято называть сервером, а потребителя – клиентом;

· преобразование данных – перевод данных из одной формы в другую или из одной структуры в другую.

Лекция 1

Основные типы сигналов и их математическое описание.

Основные типы сигналов: аналоговый, дискретный, цифровой.

Аналоговый - это сигнал, непрерывный во времени и по состоянию (рис.1а). Сигнал описывается непрерывной (или кусочно-непрерывной) функцией Х (t ). При этом и аргумент и сама функция могут принимать любые значения из некоторых интервалов:

t " ≤ t t "" , x " ≤ x x "".

Дискретный - это сигнал, дискретный во времени и непрерывный по состоянию (рис.1б). Описывается решетчатой функцией Х (n * T ), где n - номер отсчета (1,2,3,…). Интервал Т называют период дискретизации, а обратную величину f д=1/Т – частота дискретизации. Решетчатая функция определена только в моменты времени n * T и может только в эти моменты принимать любые значения из некоторого интервала x " ≤ x x "". Значения решетчатой функции, а соответственно и самого сигнала в моменты времени n * T , называют отсчетами. (Дискретный сигнал может быть как вещественным, так и комплексным).

Цифровой - это сигнал, дискретный как во времени, так и по состоянию (рис.1в). Сигналы этого типа так же описываются решетчатыми функциями Х ц(n * T ), которые могут принимать лишь конечное число значений из некоторого конечного интервала x " ≤ x x "". Эти значения называются уровнями квантования, а соответствующие функции – квантованными.

При анализе дискретных сигналов удобно пользоваться нормированным временем
, иначе , т.е. номер отсчета дискретного сигнала может интерпретироваться как нормированное время. При переходе нормированному времени дискретный сигнал можно рассматривать как функцию целочисленной переменной n . То есть далее Х (n ) равнозначно Х (n · T ).

Нормирование частоты.

По теореме Котельникова максимальная частота аналогового сигнала f в не должна быть более f д/2. Поэтому все дискретные сигналы целесообразно рассматривать в диапазоне . При этом вводится понятие нормированной частоты

или

и рассматривать дискретный сигнал f в области

или

Применение нормированной частоты позволяет исследовать частотные характеристики дискретных систем и спектры дискретных сигналов в единой полосе частот. Для ЦОС важны не абсолютные значения частоты сигнала и частоты дискретизации, а их отношение, т.е. значение нормированной частоты.

Например для 2х дискретных косинусоид:

где

В итоге:

Дискретные сигналы их одинаковы, так как равны их нормированные частоты, они, лишь, по разному будут во времени.

В общем случае дискретная косинусоида в области нормированных частот имеет вид:

Обобщенная схема Цифровой обработки сигнала.

Процесс ЦОС включает 3 этапа:

Формирователь последовательности чисел Х(n * T ) из аналогового сигнала x (t ) ;

Преобразование последовательности Х(n * T ) по заданному алгоритму цифровым процессором обработки сигналов (ЦПОС) в новую, выходную числовую последовательность y(n * T ) ;

Формирование результирующего аналогового сигнала y (t ) из последовательности y (n * T ).

Частота дискретизации f д выбирается: f д ≥ 2f в.

Реальные сигналы не удовлетворяют этому требованию. Поэтому ставят ФНЧ, ограничивающий спектр. Так как энергия реальных сигналов уменьшается с ростом частоты, то искажения вносимые ФНЧ незначительны (рис.3 а и б), а также спектры ниже:

Уровни квантования (рис 1.в.) кодируются двоичными числами, поэтому на выходе АЦП имеем последовательность двоичных чисел
. Цифровой сигнал
отличается от дискретного
на величину:

Ошибка квантования.

Для её снижения необходимо увеличивать количество уровней квантования. Дискретный сигнал поступает в ЦПОС, который по алгоритму каждому входному отчету ставит в однозначное соответствие выходной сигнал
. При этом количество операций (умножений, сложений, инверсий, пересылок и т.д.) для получения одного отсчета может исчисляться сколько угодно. Однако период обработки (время вычисления) не может быть больше периода дискретизации . А это может быть лишь, если тактовая частота f Т ЦПОС >> f Д.

Далее ЦАП формирует ступенчатый аналоговый сигнал (t ), ступеньки которого сглаживаются фильтром, получая аналоговый y (t ).

Назначение радиоэлектронных устройств, как известно, - получение, преобразование, передача и хранение информации, представленной в форме электрических сигналов. Сигналы, действующие в электронных устройствах, и соответственно сами устройства делят на две большие группы: аналоговые и цифровые.

Аналоговый сигнал - сигнал, непрерывный по уровню и во времени, т. е. такой сигнал существует в любой момент времени и может принимать любой уровень из заданного диапазона.

Квантованный сигнал - сигнал, который может принимать только определенные квантованные значения, соответствующие уровням квантования. Расстояние между двумя соседними уровнями - шаг квантования.

Дискретизированный сигнал - сигнал, значения которого заданы только в моменты времени, называемые моментами дискретизации. Расстояние между соседними моментами дискретизации - шаг дискретизации . При постоянном применима теорема Котельникова: , где - верхняя граничная частота спектра сигнала.

Цифровой сигнал - сигнал, квантованный по уровню и дискретизированный во времени. Квантованные значения цифрового сигнала обычно кодируются некоторым кодом, при этом каждый выделенный в процессе дискретизации отсчет заменяется соответствующим кодовым словом, символы которого имеют два значения - 0 и 1 (рис. 2.1).

Типичными представителями устройств аналоговой электроники являются устройства связи, радиовещания, телевидения. Общие требования, предъявляемые к аналоговым устройствам, - минимальные искажения. Стремление выполнить эти требования приводит к усложнению электрических схем и конструкции устройств. Другая проблема аналоговой электроники - достижение необходимой помехоустойчивости, ибо в аналоговом канале связи шумы принципиально неустранимы.

Цифровые сигналы формируются электронными схемами, транзисторы в которых либо закрыты (ток близок к нулю), либо полностью открыты (напряжение близко к нулю), поэтому на них рассеивается незначительная мощность и надежность цифровых устройств получается более высокой, чем аналоговых.

Цифровые устройства более помехоустойчивы, чем аналоговые, так как небольшие посторонние возмущения не вызывают ошибочного срабатывания устройств. Ошибки появляются только при таких возмущениях, при которых низкий уровень сигнала воспринимается как высокий, или наоборот. В цифровых устройствах можно также применить специальные коды, позволяющие исправить ошибки. В аналоговых устройствах такой возможности нет.

Цифровые устройства нечувствительны к разбросу (в допустимых пределах) параметров и характеристик транзисторов и других элементов схем. Безошибочно изготовленные цифровые устройства не нужно настраивать, а их характеристики полностью повторяемы. Все это очень важно при массовом изготовлении устройств по интегральной технологии. Экономичность производства и эксплуатации цифровых интегральных микросхем привела к тому, что в современных радиоэлектронных устройствах цифровой обработке подвергаются не только цифровые, но и аналоговые сигналы. Распространены цифровые фильтры, регуляторы, перемножители и др. Перед цифровой обработкой аналоговые сигналы преобразуются в цифровые с помощью аналого-цифровых преобразователей (АЦП). Обратное преобразование - восстановление аналоговых сигналов по цифровым - выполняется с помощью цифроаналоговых преобразователей (ЦАП).


При всем многообразии задач, решаемых устройствами цифровой электроники, их функционирование происходит в системах счисления, оперирующих всего двумя цифрами: нуль (0) и единица (1).

Работа цифровых устройств обычно тактируется достаточно высокочастотным генератором тактовых импульсов. В течение одного такта реализуется простейшая микрооперация - чтение, сдвиг, логическая команда и т. п. Информация представляется в виде цифрового слова. Для передачи слов используются два способа - параллельный и последовательный. Последовательное кодирование применяется при обмене информацией между цифровыми устройствами (например, в компьютерных сетях, модемной связи). Обработка информации в цифровых устройствах реализуется при использовании параллельного кодирования информации, обеспечивающего максимальное быстродействие.

Элементную базу для построения цифровых устройств составляют интегральные микросхемы (ИМС), каждая из которых реализуется с использованием определенного числа логических элементов - простейших цифровых устройств, выполняющих элементарные логические операции.

Поделиться